Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1-Phenyl-5-(piperidinomethyl)-1Htetrazole

Alexander S. Lyakhov, Sergei V. Voitekhovich, Pavel N. Gaponik and Ludmila S. Ivashkevich*

Physico-Chemical Research Institute, Belarusian State University, Leningradskaya Str. 14, Minsk 220050, Belarus
Correspondence e-mail: iva@bsu.by

Received 12 February 2004
Accepted 9 March 2004
Online 31 March 2004
In the molecule of the title 1,5-disubstituted tetrazole, $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5}$, the tetrazole and benzene rings are not coplanar, having a dihedral angle of $42.96(5)^{\circ}$ between them. The piperidine fragment adopts a chair conformation, and there is a non-classical intramolecular contact between the benzene H atom and the piperidine N atom. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the piperidine $\mathrm{C}-\mathrm{H}$ groups and the benzene rings are responsible for the formation of twodimensional networks, extending parallel to the $a b$ plane. These networks are linked together into a three-dimensional polymeric structure via $\pi-\pi$ stacking interactions between the tetrazole rings of two adjacent molecules.

Comment

This work forms part of a systematic investigation of the molecular and crystal structures of 5-(α-aminoalkyl)tetrazoles, which are of great interest in the field of bioorganic and medicinal chemistry. We previously reported the structures of 5-(piperidiniomethyl)-1H-tetrazolide (Lyakhov et al., 2003) and the copper(II) chloride complex of N, N-dimethyl-1-(1-methyl-1 H-tetrazol-5-yl)methanamine (Ivashkevich et al., 2002). We present here the crystal structure of 1-phenyl-5-(piperidinomethyl)- $1 H$-tetrazole, (I) (Fig. 1).

(I)

The tetrazole and benzene rings are planar to within 0.0012 (7) and 0.0051 (9) \AA, respectively, but they are not coplanar, their mean planes being inclined at $42.96(5)^{\circ}$ to one another.

The formal $\mathrm{N} 2=\mathrm{N} 3[1.2928(15) \mathrm{A}]$ and $\mathrm{N} 4=\mathrm{C} 5$ double bonds $[1.3169(14) \AA$] are the shortest in the tetrazole ring,
while the three remaining ring bonds have lengths in the narrow range $1.3510(15)-1.3553$ (17) \AA (Table 1). This geometry is typical of 1,5 -disubstituted tetrazoles with alkyl or aryl substitutents. An analysis performed using the Cambridge Structural Database (Version 5.25 of November 2003; Allen, 2002) gave the following mean values of the tetrazole ring

Figure 1
A view of (I), with the atom-numbering scheme and displacement ellipsoids at the 30% probability level. H atoms are shown as spheres of arbitrary radii.

Figure 2
A fragment of the crystal structure of (I), showing the two-dimensional network parallel to the $a b$ plane. Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2). H atoms, with the exception of atoms $\mathrm{H} 17 A$ and $\mathrm{H} 18 A$, have been omitted.
bond lengths for such compounds (14 hits): N1-N2 1.355 (2) $\AA, \mathrm{N} 2=\mathrm{N} 1.295$ (1) $\AA, \mathrm{N} 3-\mathrm{N} 41.357$ (2) $\AA, \mathrm{N} 4=\mathrm{C} 5$ 1.320 (2) \AA and $\mathrm{N} 1-\mathrm{C} 51.340$ (2) \AA. The tetrazole ring bond lengths of (I) are consistent with these values.

The piperidine fragment has a chair conformation (bond lengths are listed in Table 1).

There is a short intramolecular $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 13$ contact (Table 2), which may be responsible for the conformation adopted by the molecule in the solid state.

organic compounds

Because of the lack of classical hydrogen-bond donors in the structure of (I), the packing is determined by weaker interactions, namely $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ contacts.
$\mathrm{C}-\mathrm{H} \cdots \pi$ interactions arise, firstly, between piperidine atom $\mathrm{H} 17 A$ of one molecule and the benzene ring of another molecule at $\left(\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z\right)$, and, secondly, between piperidine atom $\mathrm{H} 18 A$ and the benzene ring of the molecule at $(1+x, y, z)$ (Table 2). These interactions form two-dimensional networks, extending parallel to the $a b$ plane (Fig. 2).
$\pi-\pi$ stacking interactions exist between the tetrazole rings of two molecules related by the symmetry transformation ($1-x,-y, 1-z$), the centroid-centroid distance being 3.7015 (13) Å. These interactions connect the two-dimensional networks into a three-dimensional polymeric structure.

Experimental

The title compound was prepared by aminomethylation of 1-phenyltetrazole with piperidine and formaldehyde according to the method described by Karavai \& Gaponik (1991). A solution of 1-phenyltetrazole ($5.8 \mathrm{~g}, 40 \mathrm{mmol}$), piperidine ($3.5 \mathrm{ml}, 40 \mathrm{mmol}$) and paraform (3 g) in trifluoroacetic acid (50 ml) was heated under reflux for 5 h . The solvent was removed in vacuo and the residue was treated with an aqueous solution of sodium hydroxide ($30 \%, 20 \mathrm{ml}$). The title compound was isolated by extraction of the resulting solution with diethyl ether ($3 \times 30 \mathrm{ml}$), evaporation of the diethyl ether and recrystallization of the residue from ethanol (yield $64 \%, 6.2 \mathrm{~g}$; m.p. 361 K). ${ }^{1} \mathrm{H}$ NMR (100 MHz , DMSO- d_{6}): $\delta 1.43-1.64$ ($m, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}\right), 2.40\left(t, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.82\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.58-7.66(m, 3 \mathrm{H}, \mathrm{Ph})$, $7.80-7.88$ ($m, 2 \mathrm{H}, \mathrm{Ph}$). Single crystals of (I) suitable for analysis were grown by slow evaporation from a 2 -propanol solution at room temperature in air.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5}$
$M_{r}=243.32$
Monoclinic, $P 2_{1} / n$
$a=7.7537$ (13) A
$b=10.436$ (3) \AA
$c=15.937$ (3) \AA
$\beta=96.142(13)^{\circ}$
$V=1282.2(5) \AA^{3}$
$Z=4$
$D_{x}=1.260 \mathrm{Mg} \mathrm{m}^{-3}$

Table 1
Selected intermolecular distances (\AA).

N1-C5	$1.3510(15)$	C12-N13	$1.4613(15)$
N1-N2	$1.3546(12)$	N13-C14	$1.4637(13)$
N1-C6	$1.4296(13)$	N13-C18	$1.4724(14)$
N2-N3	$1.2928(15)$	C14-C15	$1.5158(18)$
N3-N4	$1.3553(17)$	C15-C16	$1.5136(19)$
N4-C5	$1.3169(14)$	C16-C17	$1.5116(19)$
C5-C12	$1.4878(16)$	C17-C18	$1.508(2)$

Data collection

Nicolet $R 3 m$ four-circle

diffractometer

$\theta_{\text {max }}=30.1^{\circ}$
$\omega / 2 \theta$ scans
$h=0 \rightarrow 10$
4125 measured reflections
3746 independent reflections
2759 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$l=-22 \rightarrow 2$
3 standard reflections every 100 reflections intensity decay: none

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0582 P)^{2}\right. \\
\quad \\
\quad+0.0879 P] \\
\quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.25 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } \text { SHELXL97 } \\
\text { Extinction coefficient: } 0.480(16)
\end{array}
\end{aligned}
$$

Table 2

Hydrogen-bonding and $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction geometry $\left(\AA,{ }^{\circ}\right)$.
$C g B z$ is the centroid of the benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 13$	$0.978(14)$	$2.648(13)$	$3.4395(15)$	$138.3(10)$
$\mathrm{C} 17-\mathrm{H} 17 A \cdots C g B z^{\mathrm{i}}$	$1.012(16)$	$3.246(15)$	$4.0673(19)$	$139.2(11)$
$\mathrm{C} 18-\mathrm{H} 18 A \cdots C g B z^{\mathrm{ii}}$	$1.028(16)$	$2.726(15)$	$3.6679(17)$	$152.1(11)$

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $1+x, y, z$.

H -atom positions were found from a difference Fourier map and all associated parameters were refined freely $[\mathrm{C}-\mathrm{H}=0.96(1)-$ 1.05 (2) Å].

Data collection: R3m Software (Nicolet, 1980); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1171). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ivashkevich, D. O., Lyakhov, A. S., Voitekhovich, S. V., Gaponik, P. N. \& Ivashkevich, L. S. (2002). Acta Cryst. C58, m563-m564.
Karavai, V. P. \& Gaponik, P. N. (1991). Khim. Geterotsikl. Soedin. pp. 66-71. (In Russian.)
Lyakhov, A. S., Voitekhovich, S. V., Gaponik, P. N. \& Ivashkevich, L. S. (2003). Acta Cryst. C59, o22-o23.
Nicolet (1980). R3m Software. Nicolet XRD Corporation, Cupertino, California, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

